MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. EN 1.4306 Stainless Steel

Both ACI-ASTM CD4MCu steel and EN 1.4306 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is EN 1.4306 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
14 to 45
Fatigue Strength, MPa 340
190 to 330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 770
580 to 900
Tensile Strength: Yield (Proof), MPa 550
210 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
960
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 18
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
3.2
Embodied Energy, MJ/kg 49
45
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 32
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 760
110 to 820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
21 to 32
Strength to Weight: Bending, points 24
20 to 27
Thermal Diffusivity, mm2/s 4.5
4.0
Thermal Shock Resistance, points 21
13 to 20

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 24.5 to 26.5
18 to 20
Copper (Cu), % 2.8 to 3.3
0
Iron (Fe), % 59.9 to 66.3
64.8 to 72
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 4.8 to 6.0
10 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015