MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. CC496K Bronze

ACI-ASTM CD4MCu steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
97
Elongation at Break, % 18
8.6
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 79
36
Tensile Strength: Ultimate (UTS), MPa 770
210
Tensile Strength: Yield (Proof), MPa 550
99

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 3.5
3.3
Embodied Energy, MJ/kg 49
52
Embodied Water, L/kg 180
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
15
Resilience: Unit (Modulus of Resilience), kJ/m3 760
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 28
6.5
Strength to Weight: Bending, points 24
8.6
Thermal Diffusivity, mm2/s 4.5
17
Thermal Shock Resistance, points 21
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.8 to 3.3
72 to 79.5
Iron (Fe), % 59.9 to 66.3
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 4.8 to 6.0
0.5 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0