MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. C16200 Copper

ACI-ASTM CD4MCu steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 18
2.0 to 56
Fatigue Strength, MPa 340
100 to 210
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 770
240 to 550
Tensile Strength: Yield (Proof), MPa 550
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 760
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
7.4 to 17
Strength to Weight: Bending, points 24
9.6 to 17
Thermal Diffusivity, mm2/s 4.5
100
Thermal Shock Resistance, points 21
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.8 to 3.3
98.6 to 99.3
Iron (Fe), % 59.9 to 66.3
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 4.8 to 6.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0