MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. C48600 Brass

ACI-ASTM CD4MCu steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 18
20 to 25
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 770
280 to 360
Tensile Strength: Yield (Proof), MPa 550
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 18
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 49
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 760
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
9.5 to 12
Strength to Weight: Bending, points 24
12 to 14
Thermal Diffusivity, mm2/s 4.5
36
Thermal Shock Resistance, points 21
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.8 to 3.3
59 to 62
Iron (Fe), % 59.9 to 66.3
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 4.8 to 6.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4