MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. C90200 Bronze

ACI-ASTM CD4MCu steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
30
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 770
260
Tensile Strength: Yield (Proof), MPa 550
110

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
13

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.5
3.3
Embodied Energy, MJ/kg 49
53
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
63
Resilience: Unit (Modulus of Resilience), kJ/m3 760
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
8.3
Strength to Weight: Bending, points 24
10
Thermal Diffusivity, mm2/s 4.5
19
Thermal Shock Resistance, points 21
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.8 to 3.3
91 to 94
Iron (Fe), % 59.9 to 66.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 4.8 to 6.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6