MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCu Steel vs. S32760 Stainless Steel

Both ACI-ASTM CD4MCu steel and S32760 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCu steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 340
450
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
80
Tensile Strength: Ultimate (UTS), MPa 770
850
Tensile Strength: Yield (Proof), MPa 550
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.5
4.1
Embodied Energy, MJ/kg 49
57
Embodied Water, L/kg 180
180

Common Calculations

PREN (Pitting Resistance) 32
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 760
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
30
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 4.5
4.0
Thermal Shock Resistance, points 21
23

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 24.5 to 26.5
24 to 26
Copper (Cu), % 2.8 to 3.3
0.5 to 1.0
Iron (Fe), % 59.9 to 66.3
57.6 to 65.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.8 to 2.3
3.0 to 4.0
Nickel (Ni), % 4.8 to 6.0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0