MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCuN Steel vs. EN 1.8888 Steel

Both ACI-ASTM CD4MCuN steel and EN 1.8888 steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCuN steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
16
Fatigue Strength, MPa 340
470
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 770
830
Tensile Strength: Yield (Proof), MPa 550
720

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.9
Embodied Energy, MJ/kg 49
26
Embodied Water, L/kg 180
54

Common Calculations

PREN (Pitting Resistance) 35
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 760
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
29
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 4.5
11
Thermal Shock Resistance, points 21
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.040
0 to 0.2
Chromium (Cr), % 24.5 to 26.5
0 to 1.5
Copper (Cu), % 2.7 to 3.3
0 to 0.3
Iron (Fe), % 59.5 to 66.3
91.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 1.7 to 2.3
0 to 0.7
Nickel (Ni), % 4.7 to 6.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.1 to 0.25
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15