MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCuN Steel vs. Grade 1 Titanium

ACI-ASTM CD4MCuN steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCuN steel and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
28
Fatigue Strength, MPa 340
170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 770
310
Tensile Strength: Yield (Proof), MPa 550
220

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
20
Thermal Expansion, µm/m-K 13
8.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.5
31
Embodied Energy, MJ/kg 49
510
Embodied Water, L/kg 180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
79
Resilience: Unit (Modulus of Resilience), kJ/m3 760
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
23
Thermal Diffusivity, mm2/s 4.5
8.2
Thermal Shock Resistance, points 21
24

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.080
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.7 to 3.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 59.5 to 66.3
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.7 to 2.3
0
Nickel (Ni), % 4.7 to 6.0
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
99.095 to 100
Residuals, % 0
0 to 0.4