MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCuN Steel vs. C18700 Copper

ACI-ASTM CD4MCuN steel belongs to the iron alloys classification, while C18700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCuN steel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
9.0 to 9.6
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 770
290 to 330
Tensile Strength: Yield (Proof), MPa 550
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
98
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 760
240 to 280
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
9.0 to 10
Strength to Weight: Bending, points 24
11 to 12
Thermal Diffusivity, mm2/s 4.5
110
Thermal Shock Resistance, points 21
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.7 to 3.3
98 to 99.2
Iron (Fe), % 59.5 to 66.3
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.7 to 2.3
0
Nickel (Ni), % 4.7 to 6.0
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5