MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCuN Steel vs. C70700 Copper-nickel

ACI-ASTM CD4MCuN steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCuN steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 18
39
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
46
Tensile Strength: Ultimate (UTS), MPa 770
320
Tensile Strength: Yield (Proof), MPa 550
110

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1420
1120
Melting Onset (Solidus), °C 1380
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
59
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 49
52
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 760
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
10
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 4.5
17
Thermal Shock Resistance, points 21
12

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.7 to 3.3
88.5 to 90.5
Iron (Fe), % 59.5 to 66.3
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 1.7 to 2.3
0
Nickel (Ni), % 4.7 to 6.0
9.5 to 10.5
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5