MakeItFrom.com
Menu (ESC)

ACI-ASTM CD6MN Steel vs. 354.0 Aluminum

ACI-ASTM CD6MN steel belongs to the iron alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CD6MN steel and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
2.4 to 3.0
Fatigue Strength, MPa 370
92 to 120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 730
360 to 380
Tensile Strength: Yield (Proof), MPa 510
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.4
7.8
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 650
540 to 670
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 26
37 to 39
Strength to Weight: Bending, points 23
42 to 44
Thermal Diffusivity, mm2/s 4.4
52
Thermal Shock Resistance, points 20
17 to 18

Alloy Composition

Aluminum (Al), % 0
87.3 to 89.4
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0
1.6 to 2.0
Iron (Fe), % 62.1 to 70.1
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
8.6 to 9.4
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15