MakeItFrom.com
Menu (ESC)

ACI-ASTM CD6MN Steel vs. AISI 321H Stainless Steel

Both ACI-ASTM CD6MN steel and AISI 321H stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD6MN steel and the bottom bar is AISI 321H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
40
Fatigue Strength, MPa 370
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 730
580
Tensile Strength: Yield (Proof), MPa 510
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
480
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 48
46
Embodied Water, L/kg 170
140

Common Calculations

PREN (Pitting Resistance) 36
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
190
Resilience: Unit (Modulus of Resilience), kJ/m3 650
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.4
4.0
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0 to 0.060
0.040 to 0.1
Chromium (Cr), % 24 to 27
17 to 19
Iron (Fe), % 62.1 to 70.1
65.4 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 4.0 to 6.0
9.0 to 12
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.7