MakeItFrom.com
Menu (ESC)

ACI-ASTM CD6MN Steel vs. SAE-AISI 1039 Steel

Both ACI-ASTM CD6MN steel and SAE-AISI 1039 steel are iron alloys. They have 67% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD6MN steel and the bottom bar is SAE-AISI 1039 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
14 to 18
Fatigue Strength, MPa 370
230 to 370
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 730
610 to 690
Tensile Strength: Yield (Proof), MPa 510
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 17
1.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 48
18
Embodied Water, L/kg 170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
88 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 650
310 to 890
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
22 to 24
Strength to Weight: Bending, points 23
20 to 22
Thermal Diffusivity, mm2/s 4.4
14
Thermal Shock Resistance, points 20
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.060
0.37 to 0.44
Chromium (Cr), % 24 to 27
0
Iron (Fe), % 62.1 to 70.1
98.5 to 98.9
Manganese (Mn), % 0 to 1.0
0.7 to 1.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0 to 0.050