MakeItFrom.com
Menu (ESC)

ACI-ASTM CD6MN Steel vs. C72150 Copper-nickel

ACI-ASTM CD6MN steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD6MN steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 28
29
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
55
Tensile Strength: Ultimate (UTS), MPa 730
490
Tensile Strength: Yield (Proof), MPa 510
210

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1440
1210
Melting Onset (Solidus), °C 1390
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
45
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
6.1
Embodied Energy, MJ/kg 48
88
Embodied Water, L/kg 170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
150
Stiffness to Weight: Axial, points 15
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26
15
Strength to Weight: Bending, points 23
15
Thermal Diffusivity, mm2/s 4.4
6.0
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 62.1 to 70.1
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 4.0 to 6.0
43 to 46
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5