MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. 2218 Aluminum

ACI-ASTM CE30 steel belongs to the iron alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 11
6.8 to 10
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 630
330 to 430
Tensile Strength: Yield (Proof), MPa 310
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
510
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.4
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 240
450 to 650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 23
30 to 39
Strength to Weight: Bending, points 21
34 to 41
Thermal Diffusivity, mm2/s 3.6
52
Thermal Shock Resistance, points 13
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 55.1 to 66
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0 to 0.2
Nickel (Ni), % 8.0 to 11
1.7 to 2.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.9
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15