MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. 6182 Aluminum

ACI-ASTM CE30 steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11
6.8 to 13
Fatigue Strength, MPa 170
63 to 99
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 630
230 to 320
Tensile Strength: Yield (Proof), MPa 310
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
600
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.4
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 520
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
23 to 32
Strength to Weight: Bending, points 21
30 to 38
Thermal Diffusivity, mm2/s 3.6
65
Thermal Shock Resistance, points 13
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 55.1 to 66
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.5
0.5 to 1.0
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.9 to 1.3
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15