MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. 7129 Aluminum

ACI-ASTM CE30 steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11
9.0 to 9.1
Fatigue Strength, MPa 170
150 to 190
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 630
430
Tensile Strength: Yield (Proof), MPa 310
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
510
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 3.4
8.3
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1050 to 1090
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 23
41
Strength to Weight: Bending, points 21
43 to 44
Thermal Diffusivity, mm2/s 3.6
58
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 55.1 to 66
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15