MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. A201.0 Aluminum

ACI-ASTM CE30 steel belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11
4.7
Fatigue Strength, MPa 170
97
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 630
480
Tensile Strength: Yield (Proof), MPa 310
420

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
570
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
90

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.4
8.1
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
22
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1250
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 23
44
Strength to Weight: Bending, points 21
45
Thermal Diffusivity, mm2/s 3.6
46
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 55.1 to 66
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.5
0.2 to 0.4
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1