MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. AWS E349

Both ACI-ASTM CE30 steel and AWS E349 are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is AWS E349.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
29
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
78
Tensile Strength: Ultimate (UTS), MPa 630
770

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Melting Completion (Liquidus), °C 1410
1470
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
25
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.4
4.9
Embodied Energy, MJ/kg 49
72
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 28
24
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
27
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 3.6
4.1
Thermal Shock Resistance, points 13
20

Alloy Composition

Carbon (C), % 0 to 0.3
0 to 0.13
Chromium (Cr), % 26 to 30
18 to 21
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 55.1 to 66
60.5 to 71.1
Manganese (Mn), % 0 to 1.5
0.5 to 2.5
Molybdenum (Mo), % 0
0.35 to 0.65
Nickel (Ni), % 8.0 to 11
8.0 to 10
Niobium (Nb), % 0
0.75 to 1.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0
1.3 to 1.8
Vanadium (V), % 0
0.1 to 0.3