MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. C42600 Brass

ACI-ASTM CE30 steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
1.1 to 40
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 630
410 to 830
Tensile Strength: Yield (Proof), MPa 310
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
26

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 49
48
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 240
230 to 2970
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
13 to 27
Strength to Weight: Bending, points 21
14 to 23
Thermal Diffusivity, mm2/s 3.6
33
Thermal Shock Resistance, points 13
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 55.1 to 66
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0.020 to 0.050
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2