MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. C90200 Bronze

ACI-ASTM CE30 steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
30
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 630
260
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1360
880
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 14
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
34
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.4
3.3
Embodied Energy, MJ/kg 49
53
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
63
Resilience: Unit (Modulus of Resilience), kJ/m3 240
55
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
8.3
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 3.6
19
Thermal Shock Resistance, points 13
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 55.1 to 66
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6