MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. C96600 Copper

ACI-ASTM CE30 steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 11
7.0
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
52
Tensile Strength: Ultimate (UTS), MPa 630
760
Tensile Strength: Yield (Proof), MPa 310
480

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
280
Melting Completion (Liquidus), °C 1410
1180
Melting Onset (Solidus), °C 1360
1100
Specific Heat Capacity, J/kg-K 490
400
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
65
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
7.0
Embodied Energy, MJ/kg 49
100
Embodied Water, L/kg 180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
47
Resilience: Unit (Modulus of Resilience), kJ/m3 240
830
Stiffness to Weight: Axial, points 15
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 3.6
8.4
Thermal Shock Resistance, points 13
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 55.1 to 66
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 8.0 to 11
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5