MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. S43940 Stainless Steel

Both ACI-ASTM CE30 steel and S43940 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
21
Fatigue Strength, MPa 170
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 630
490
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 460
540
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 49
38
Embodied Water, L/kg 180
120

Common Calculations

PREN (Pitting Resistance) 28
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
86
Resilience: Unit (Modulus of Resilience), kJ/m3 240
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.6
6.8
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0 to 0.3
0 to 0.030
Chromium (Cr), % 26 to 30
17.5 to 18.5
Iron (Fe), % 55.1 to 66
78.2 to 82.1
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 8.0 to 11
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6