MakeItFrom.com
Menu (ESC)

ACI-ASTM CE30 Steel vs. S44660 Stainless Steel

Both ACI-ASTM CE30 steel and S44660 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE30 steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 11
20
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
81
Tensile Strength: Ultimate (UTS), MPa 630
660
Tensile Strength: Yield (Proof), MPa 310
510

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 460
640
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
21
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
4.3
Embodied Energy, MJ/kg 49
61
Embodied Water, L/kg 180
180

Common Calculations

PREN (Pitting Resistance) 28
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
640
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.6
4.5
Thermal Shock Resistance, points 13
21

Alloy Composition

Carbon (C), % 0 to 0.3
0 to 0.030
Chromium (Cr), % 26 to 30
25 to 28
Iron (Fe), % 55.1 to 66
60.4 to 71
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 8.0 to 11
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0