MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. ASTM A369 Grade FP92

Both ACI-ASTM CE3MN steel and ASTM A369 grade FP92 are iron alloys. Both are furnished in the normalized and tempered condition. They have 72% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 20
19
Fatigue Strength, MPa 380
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
76
Tensile Strength: Ultimate (UTS), MPa 770
710
Tensile Strength: Yield (Proof), MPa 590
490

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
590
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 21
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 58
40
Embodied Water, L/kg 180
89

Common Calculations

PREN (Pitting Resistance) 43
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 840
620
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
25
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 24 to 26
8.5 to 9.5
Iron (Fe), % 58.1 to 65.9
85.8 to 89.1
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 4.0 to 5.0
0.3 to 0.6
Nickel (Ni), % 6.0 to 8.0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0.1 to 0.3
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010