MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. Grade 35 Titanium

ACI-ASTM CE3MN steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 20
5.6
Fatigue Strength, MPa 380
330
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
41
Tensile Strength: Ultimate (UTS), MPa 770
1000
Tensile Strength: Yield (Proof), MPa 590
630

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1450
1630
Melting Onset (Solidus), °C 1410
1580
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 15
7.4
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 21
37
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 4.2
33
Embodied Energy, MJ/kg 58
530
Embodied Water, L/kg 180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
49
Resilience: Unit (Modulus of Resilience), kJ/m3 840
1830
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27
61
Strength to Weight: Bending, points 24
49
Thermal Diffusivity, mm2/s 4.1
3.0
Thermal Shock Resistance, points 21
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.1 to 65.9
0.2 to 0.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
1.5 to 2.5
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.1 to 0.3
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.2 to 0.4
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4