MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. C14500 Copper

ACI-ASTM CE3MN steel belongs to the iron alloys classification, while C14500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 20
12 to 50
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Tensile Strength: Ultimate (UTS), MPa 770
220 to 330
Tensile Strength: Yield (Proof), MPa 590
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
94
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 21
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.2
2.6
Embodied Energy, MJ/kg 58
42
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 840
21 to 300
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
6.8 to 10
Strength to Weight: Bending, points 24
9.1 to 12
Thermal Diffusivity, mm2/s 4.1
100
Thermal Shock Resistance, points 21
8.0 to 12

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 58.1 to 65.9
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.012
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Tellurium (Te), % 0
0.4 to 0.7