MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. C17200 Copper

ACI-ASTM CE3MN steel belongs to the iron alloys classification, while C17200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is C17200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 20
1.1 to 37
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 770
480 to 1380
Tensile Strength: Yield (Proof), MPa 590
160 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
280
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
23

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.2
9.4
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
4.2 to 500
Resilience: Unit (Modulus of Resilience), kJ/m3 840
110 to 5720
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
15 to 44
Strength to Weight: Bending, points 24
16 to 31
Thermal Diffusivity, mm2/s 4.1
31
Thermal Shock Resistance, points 21
16 to 46

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
96.1 to 98
Iron (Fe), % 58.1 to 65.9
0 to 0.4
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
0.2 to 0.6
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5