MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. C85400 Brass

ACI-ASTM CE3MN steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 20
23
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 770
220
Tensile Strength: Yield (Proof), MPa 590
85

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
22

Otherwise Unclassified Properties

Base Metal Price, % relative 21
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 58
46
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
40
Resilience: Unit (Modulus of Resilience), kJ/m3 840
35
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
7.5
Strength to Weight: Bending, points 24
9.9
Thermal Diffusivity, mm2/s 4.1
28
Thermal Shock Resistance, points 21
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 58.1 to 65.9
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1