MakeItFrom.com
Menu (ESC)

ACI-ASTM CE3MN Steel vs. N10003 Nickel

ACI-ASTM CE3MN steel belongs to the iron alloys classification, while N10003 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE3MN steel and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
210
Elongation at Break, % 20
42
Fatigue Strength, MPa 380
260
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 81
80
Tensile Strength: Ultimate (UTS), MPa 770
780
Tensile Strength: Yield (Proof), MPa 590
320

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1450
1520
Melting Onset (Solidus), °C 1410
1460
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
70
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.2
13
Embodied Energy, MJ/kg 58
180
Embodied Water, L/kg 180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
260
Resilience: Unit (Modulus of Resilience), kJ/m3 840
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.1
3.1
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 24 to 26
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 58.1 to 65.9
0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
15 to 18
Nickel (Ni), % 6.0 to 8.0
64.8 to 79
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5