MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. 5019 Aluminum

ACI-ASTM CE8MN steel belongs to the iron alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 29
2.2 to 18
Fatigue Strength, MPa 370
100 to 160
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 750
280 to 360
Tensile Strength: Yield (Proof), MPa 500
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.2
9.0
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 620
110 to 650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 27
29 to 38
Strength to Weight: Bending, points 23
35 to 42
Thermal Diffusivity, mm2/s 4.2
52
Thermal Shock Resistance, points 21
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22.5 to 25.5
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 56 to 66.4
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 8.0 to 11
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15