MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. A206.0 Aluminum

ACI-ASTM CE8MN steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 29
4.2 to 10
Fatigue Strength, MPa 370
90 to 180
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 750
390 to 440
Tensile Strength: Yield (Proof), MPa 500
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 21
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 4.2
8.0
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 620
440 to 1000
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 27
36 to 41
Strength to Weight: Bending, points 23
39 to 43
Thermal Diffusivity, mm2/s 4.2
48
Thermal Shock Resistance, points 21
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22.5 to 25.5
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 56 to 66.4
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.050
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15