MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. EN 1.4613 Stainless Steel

Both ACI-ASTM CE8MN steel and EN 1.4613 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
21
Fatigue Strength, MPa 370
180
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 80
79
Tensile Strength: Ultimate (UTS), MPa 750
530
Tensile Strength: Yield (Proof), MPa 500
280

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 440
550
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
19
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.2
2.6
Embodied Energy, MJ/kg 58
38
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 40
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
91
Resilience: Unit (Modulus of Resilience), kJ/m3 620
190
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.2
5.2
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 22.5 to 25.5
22 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 56 to 66.4
70.3 to 77.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.5
0 to 0.5
Nickel (Ni), % 8.0 to 11
0 to 0.5
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0