MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. EN 1.4986 Stainless Steel

Both ACI-ASTM CE8MN steel and EN 1.4986 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
18
Fatigue Strength, MPa 370
350
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 750
750
Tensile Strength: Yield (Proof), MPa 500
560

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.2
4.8
Embodied Energy, MJ/kg 58
67
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 40
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
790
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
26
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 21
16

Alloy Composition

Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 22.5 to 25.5
15.5 to 17.5
Iron (Fe), % 56 to 66.4
59.4 to 66.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.5
1.6 to 2.0
Nickel (Ni), % 8.0 to 11
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.5
0.3 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.030