MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. C86300 Bronze

ACI-ASTM CE8MN steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
14
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 750
850
Tensile Strength: Yield (Proof), MPa 500
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 16
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 21
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.2
3.0
Embodied Energy, MJ/kg 58
51
Embodied Water, L/kg 180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
100
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1030
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 21
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22.5 to 25.5
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 56 to 66.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 8.0 to 11
0 to 1.0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0