MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. C90700 Bronze

ACI-ASTM CE8MN steel belongs to the iron alloys classification, while C90700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
12
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 750
330
Tensile Strength: Yield (Proof), MPa 500
180

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
71
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 21
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 4.2
3.7
Embodied Energy, MJ/kg 58
60
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
34
Resilience: Unit (Modulus of Resilience), kJ/m3 620
150
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 4.2
22
Thermal Shock Resistance, points 21
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22.5 to 25.5
0
Copper (Cu), % 0
88 to 90
Iron (Fe), % 56 to 66.4
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.5
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6