MakeItFrom.com
Menu (ESC)

ACI-ASTM CF10SMnN Steel vs. 332.0 Aluminum

ACI-ASTM CF10SMnN steel belongs to the iron alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CF10SMnN steel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 34
1.0
Fatigue Strength, MPa 260
90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 660
250
Tensile Strength: Yield (Proof), MPa 330
190

Thermal Properties

Latent Heat of Fusion, J/g 340
530
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1360
580
Melting Onset (Solidus), °C 1310
530
Specific Heat Capacity, J/kg-K 500
880
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.5
2.8
Embodied Carbon, kg CO2/kg material 3.1
7.8
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
31
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 59.1 to 65.4
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 7.0 to 9.0
0 to 0.5
Nickel (Ni), % 8.0 to 9.0
0 to 0.5
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 3.5 to 4.5
8.5 to 10.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5