MakeItFrom.com
Menu (ESC)

ACI-ASTM CF10SMnN Steel vs. 359.0 Aluminum

ACI-ASTM CF10SMnN steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CF10SMnN steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
3.8 to 4.9
Fatigue Strength, MPa 260
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 660
340 to 350
Tensile Strength: Yield (Proof), MPa 330
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 340
530
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1310
570
Specific Heat Capacity, J/kg-K 500
910
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.5
2.6
Embodied Carbon, kg CO2/kg material 3.1
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 280
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 26
54
Strength to Weight: Axial, points 24
37 to 38
Strength to Weight: Bending, points 22
42 to 43
Thermal Shock Resistance, points 15
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 59.1 to 65.4
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 7.0 to 9.0
0 to 0.1
Nickel (Ni), % 8.0 to 9.0
0
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 3.5 to 4.5
8.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15