MakeItFrom.com
Menu (ESC)

ACI-ASTM CF16Fa Steel vs. AISI 445 Stainless Steel

Both ACI-ASTM CF16Fa steel and AISI 445 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF16Fa steel and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
25
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 540
480
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
480
Maximum Temperature: Mechanical, °C 980
950
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1370
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 4.2
5.6
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0 to 0.16
0 to 0.020
Chromium (Cr), % 18 to 21
19 to 21
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 62.1 to 72.4
74.9 to 80.7
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.8
0
Nickel (Ni), % 9.0 to 12
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0.2 to 0.4
0 to 0.012