MakeItFrom.com
Menu (ESC)

ACI-ASTM CF16Fa Steel vs. EN 1.0565 Steel

Both ACI-ASTM CF16Fa steel and EN 1.0565 steel are iron alloys. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF16Fa steel and the bottom bar is EN 1.0565 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
24
Fatigue Strength, MPa 170
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
50
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.2
14
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.16
0 to 0.2
Chromium (Cr), % 18 to 21
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 62.1 to 72.4
96.2 to 99
Manganese (Mn), % 0 to 1.5
0.9 to 1.7
Molybdenum (Mo), % 0.4 to 0.8
0 to 0.080
Nickel (Ni), % 9.0 to 12
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0.2 to 0.4
0 to 0.015
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1