MakeItFrom.com
Menu (ESC)

ACI-ASTM CF16Fa Steel vs. C62400 Bronze

ACI-ASTM CF16Fa steel belongs to the iron alloys classification, while C62400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF16Fa steel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
11 to 14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 540
690 to 730
Tensile Strength: Yield (Proof), MPa 230
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 17
27
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.3
3.2
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 150
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 140
320 to 550
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
23 to 25
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 4.2
16
Thermal Shock Resistance, points 12
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.16
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
82.8 to 88
Iron (Fe), % 62.1 to 72.4
2.0 to 4.5
Manganese (Mn), % 0 to 1.5
0 to 0.3
Molybdenum (Mo), % 0.4 to 0.8
0
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.25
Sulfur (S), % 0.2 to 0.4
0
Tin (Sn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5