MakeItFrom.com
Menu (ESC)

ACI-ASTM CF16Fa Steel vs. N06035 Nickel

ACI-ASTM CF16Fa steel belongs to the iron alloys classification, while N06035 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF16Fa steel and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
34
Fatigue Strength, MPa 170
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
84
Tensile Strength: Ultimate (UTS), MPa 540
660
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 300
340
Maximum Temperature: Mechanical, °C 980
1030
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1370
1390
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 17
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.3
10
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.16
0 to 0.050
Chromium (Cr), % 18 to 21
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 62.1 to 72.4
0 to 2.0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0.4 to 0.8
7.6 to 9.0
Nickel (Ni), % 9.0 to 12
51.1 to 60.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 2.0
0 to 0.6
Sulfur (S), % 0.2 to 0.4
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2