MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. EN 1.4021 Stainless Steel

Both ACI-ASTM CF20 steel and EN 1.4021 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 50
11 to 17
Fatigue Strength, MPa 240
240 to 380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 530
630 to 880
Tensile Strength: Yield (Proof), MPa 250
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 970
760
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
1.9
Embodied Energy, MJ/kg 44
27
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 20
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
400 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
23 to 31
Strength to Weight: Bending, points 19
21 to 26
Thermal Diffusivity, mm2/s 4.3
8.1
Thermal Shock Resistance, points 11
22 to 31

Alloy Composition

Carbon (C), % 0 to 0.2
0.16 to 0.25
Chromium (Cr), % 18 to 21
12 to 14
Iron (Fe), % 64.2 to 74
83.2 to 87.8
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015