MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. CC332G Bronze

ACI-ASTM CF20 steel belongs to the iron alloys classification, while CC332G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 50
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 530
620
Tensile Strength: Yield (Proof), MPa 250
250

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 970
220
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 44
55
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
270
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.3
12
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
80 to 86
Iron (Fe), % 64.2 to 74
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 8.0 to 11
1.5 to 4.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5