MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. CC497K Bronze

ACI-ASTM CF20 steel belongs to the iron alloys classification, while CC497K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
55
Elastic (Young's, Tensile) Modulus, GPa 200
93
Elongation at Break, % 50
6.7
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
34
Tensile Strength: Ultimate (UTS), MPa 530
190
Tensile Strength: Yield (Proof), MPa 250
91

Thermal Properties

Latent Heat of Fusion, J/g 300
160
Maximum Temperature: Mechanical, °C 970
130
Melting Completion (Liquidus), °C 1420
870
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 480
330
Thermal Conductivity, W/m-K 16
53
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 3.1
3.0
Embodied Energy, MJ/kg 44
48
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
10
Resilience: Unit (Modulus of Resilience), kJ/m3 160
45
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 19
5.6
Strength to Weight: Bending, points 19
7.8
Thermal Diffusivity, mm2/s 4.3
17
Thermal Shock Resistance, points 11
7.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
67.5 to 77.5
Iron (Fe), % 64.2 to 74
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0 to 1.5
0 to 0.2
Nickel (Ni), % 8.0 to 11
0.5 to 2.5
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 2.0
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0