MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. Grade 29 Titanium

ACI-ASTM CF20 steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
6.8 to 11
Fatigue Strength, MPa 240
460 to 510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 530
930 to 940
Tensile Strength: Yield (Proof), MPa 250
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 970
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 16
7.3
Thermal Expansion, µm/m-K 17
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.1
39
Embodied Energy, MJ/kg 44
640
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
3420 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19
58 to 59
Strength to Weight: Bending, points 19
47 to 48
Thermal Diffusivity, mm2/s 4.3
2.9
Thermal Shock Resistance, points 11
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 18 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.2 to 74
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4