MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. Grade C-6 Titanium

ACI-ASTM CF20 steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
290
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 50
9.0
Fatigue Strength, MPa 240
460
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 530
890
Tensile Strength: Yield (Proof), MPa 250
830

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 970
310
Melting Completion (Liquidus), °C 1420
1580
Melting Onset (Solidus), °C 1410
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
7.8
Thermal Expansion, µm/m-K 17
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.1
30
Embodied Energy, MJ/kg 44
480
Embodied Water, L/kg 150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
78
Resilience: Unit (Modulus of Resilience), kJ/m3 160
3300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19
55
Strength to Weight: Bending, points 19
46
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 11
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.2
0 to 0.1
Chromium (Cr), % 18 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.2 to 74
0 to 0.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4