MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. C18600 Copper

ACI-ASTM CF20 steel belongs to the iron alloys classification, while C18600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 50
8.0 to 11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 530
520 to 580
Tensile Strength: Yield (Proof), MPa 250
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 970
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
280
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
70
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
71

Otherwise Unclassified Properties

Base Metal Price, % relative 16
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.1
2.9
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1060 to 1180
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
16 to 18
Strength to Weight: Bending, points 19
16 to 17
Thermal Diffusivity, mm2/s 4.3
81
Thermal Shock Resistance, points 11
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 18 to 21
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0
96.5 to 99.55
Iron (Fe), % 64.2 to 74
0.25 to 0.8
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5