MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. C42600 Brass

ACI-ASTM CF20 steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 530
410 to 830
Tensile Strength: Yield (Proof), MPa 250
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 970
180
Melting Completion (Liquidus), °C 1420
1030
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
26

Otherwise Unclassified Properties

Base Metal Price, % relative 16
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.1
2.9
Embodied Energy, MJ/kg 44
48
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
13 to 27
Strength to Weight: Bending, points 19
14 to 23
Thermal Diffusivity, mm2/s 4.3
33
Thermal Shock Resistance, points 11
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 64.2 to 74
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0.020 to 0.050
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2