MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. S44537 Stainless Steel

Both ACI-ASTM CF20 steel and S44537 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
21
Fatigue Strength, MPa 240
230
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 530
510
Tensile Strength: Yield (Proof), MPa 250
360

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
530
Maximum Temperature: Mechanical, °C 970
1000
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 44
50
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
95
Resilience: Unit (Modulus of Resilience), kJ/m3 160
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 4.3
5.6
Thermal Shock Resistance, points 11
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 18 to 21
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 64.2 to 74
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.5
0 to 0.8
Nickel (Ni), % 8.0 to 11
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 2.0
0.1 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0